PiXL Pre Public Examination, May 2018, 2F, Edexcel Style Mark Scheme					
Qn	Working	Answer	Mark		Notes
1		13.3225	1	B1	cao
2		66\%	1	B1	cao
3		$\frac{25}{44}$	1	B1	cao
4		0.3	1	B1	cao
5 (a) (b) (c) (d)		$\begin{gathered} 13,21,39,27,33 \\ 33 \\ 13 \text { or } 39 \\ 27 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	cao cao cao cao
6		Yes, because the median is 4	2	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { C1 } \end{array}$	for method to find the median explanation that 4 is the median and is bigger than 3 .
7	$\begin{aligned} & 52.4 \times 1000=52400 \\ & 52400-22500=29900 \\ & 29900 \div 1000=29.9 \end{aligned}$	29.9 km	3	P1 P1 A1	for starting process to convert 52.4 km to metres or 22500 m to km for 52400 m or 22.5 km seen cao

Qn	Working	Answer	Mark		Notes
8 (a) (b) (c)	$\begin{array}{\|l} 4 n-29=-50 \\ 4 n=-21 \\ n=-5.25 \\ \hline \end{array}$	-5 and -1 Add 4 Full explanation	2	B2 B1 C1	for -5 and -1 cao nth term is $4 n-29 ;(4 \times-5)-29=-49$
9		$(24-4) \div 2=10$	2	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B2 } \\ \hline \end{array}$	$\begin{aligned} & \text { for }(24-4) \div 2 \text { or } 10 \\ & \text { for }(24-4) \div 2=10 \end{aligned}$
10	$\begin{aligned} & 1095 \div 4=273.75 \\ & 273.75 \times 100=27375 \end{aligned}$	27375	2	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	$\begin{aligned} & \text { for } 1095 \div 4=273.75 \\ & \text { cao } \end{aligned}$
$\begin{aligned} \hline 11 & \text { (a) } \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & 50+(33 \times 9)=347 \mathrm{mins} \\ & (554-50) \div 9=56 \end{aligned}$	5hours 47 minutes 56 tiles	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	$\begin{aligned} & \text { for } 50+(33 \times 9) \text { or } 347 \text { seen } \\ & \text { cao } \\ & \text { for } 554 \text { minutes or }(554-50) \div 9 \\ & \text { cao } \end{aligned}$
$\begin{array}{\|lr} \hline 12 & \text { (a) (i) } \\ & \text { (ii) } \\ & \text { (b)(i) } \\ & \text { (ii) } \end{array}$	$\begin{array}{\|l} 510 \div 150=3.4 \\ 3.4 \times 35=119 \\ (510 \div 150) \times 3=10.2 \\ (600 \div 150) \times 5=20 \\ 20-10.2=9.8 \\ \hline \end{array}$	Nutty Crunch 186kj 119 g 9.8 g	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	```cao cao for \(35 \div 150\) or \(510 \div 150\) cao for \(3 \div 150\) or \(510 \div 150\) or \(5 \div 150\) or \(600 \div 150\) cao```
$\begin{array}{rr} \hline 13 & \text { (a) } \\ & \text { (b) } \end{array}$		$\begin{aligned} & 4: 3: 5 \\ & 2.5 \mathrm{oe} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { for } 640: 480: 800 \text { or } 320: 240: 400 \\ & \text { cao } \\ & \text { cao } \end{aligned}$

Qn	Working	Answer	Mark	Notes	
14 (a) (b)(i) (ii) (c)	£30 is 1 hr $\begin{array}{\|l} 420-50=370 \\ 370 \div 30=12.333 \ldots \\ \hline \end{array}$	$\begin{gathered} £ 50 \\ £ 200 \\ £ 110 \\ 12 \frac{1}{3} \mathrm{hrs} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	```cao cao cao for £30 is 1 hour's work cao```
15	$\begin{aligned} & (180-38) \div 2=71^{\circ} \\ & 180-71=109^{\circ} \end{aligned}$	Shown, with reasons	4	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { C1 } \\ \text { C1 } \\ \hline \end{array}$	for method to find angle $A B C$ or $A C B$ for full method $(180-38) \div 2=71^{\circ} ; 180-71=$ 109° for one appropriate reason for complete set of reasons
16	$\begin{aligned} & 375.5-350=25.5 \\ & (25.5 \div 350) \times 100 \\ & =7.28 \ldots \end{aligned}$	7.3\%	3	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { for } 375.5-350 \text { or } 25.5 \text { seen } \\ & \text { for }(25.5 \div 350) \times 100 \\ & \text { cao } \end{aligned}$
$17 \quad \text { (a) }$ (b)	$\begin{aligned} 63 \div 3 & =21 \text { is } 1 \text { part } \\ 21 \times 5 & =105 \end{aligned}$	$\begin{gathered} \frac{4}{12} \mathrm{oe} \\ 105 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	cao for method to find 1 part cao
18	$\begin{aligned} & \hline 0.6 \times 13=£ 7.80 \\ & 7.8 \times 1.2=£ 9.36 \\ & 8 \times 1.16=£ 9.28 \end{aligned}$	Cheaper to eat in the UK by 8p	4	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { C1 } \end{aligned}$	for cost of pizza in the same currency (either $\$$ or $\mathfrak{£}$) for method to find cost of one pizza including service charge for full method to find cost in both countries ie 9.36 and 9.28 seen oe. statement
$\begin{aligned} 19 & \text { (a) } \\ & \text { (b) } \end{aligned}$		All 5 points plotted $39 \%-44 \%$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	for at least 2 correct points plotted for all points plotted correctly for line of best that can be used to estimate percentage score on paper 2

Qn	Working	Answer	Mark	Notes	
(c) (d) (e)		reason 0.8-1 interpretation given	2	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	for 39-44\% for reason, e.g. lobf can vary, data is only a sample, scale cannot be read exactly for method to find gradient, eg triangle drawn with "change in distance \div change in time for 0.8-1 as the score in paper lincreases, the score in paper 2 increases.
$\begin{aligned} 20 & \text { (a) } \\ & \text { (b) } \end{aligned}$		$\begin{gathered} \text { Enlargement, SF2, } \\ \text { centre }(1,3) \\ \text { Reflection in } y=x \end{gathered}$	2 2	$\begin{array}{\|l\|l\|} \hline \text { B1 } \\ \hline \end{array}$	for enlargement and scale factor 2 for centre $(1,3)$ for reflection for mirror line $y=x$
21	$\begin{aligned} & 12(3 x+5)=10(4 x-3) \\ & 36 x+60=40 x-30 \\ & 90=4 x ; x=22.5 \\ & 2((4 \times 22.5)-3)+20= \\ & 194 \end{aligned}$	194 cm	5	P1 P1 P1 A1 B1	for process of forming an expression for one area for process of forming an equation to find value of x for complete process to solve the equation for $4 x=90$ or $x=22.5$ ft using value of x in perimeter of B
22	$\begin{aligned} & \frac{5^{2}-11^{2}}{2 \pi^{2}} \\ & \frac{-96}{2 \pi^{2}}=-4.86341 \end{aligned}$	-4.9	3	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	for substituting correctly for -96 or 19.73... seen cao
23	$\begin{aligned} & (1 \times 10)+(3 \times 8)+ \\ & (5.5 \times 5)+(8.5 \times 3)+ \\ & (12 \times 4)=135 \\ & 135 \div 30=4.5 \\ & \hline \end{aligned}$	5	3	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	for $f \times x$ using midpoints for $\Sigma f x \div 30$ cao
24	$\begin{aligned} & 13.6^{2}+9.3^{2}=271.4 \\ & \sqrt{271.45}=16.47573974 \\ & 16.47573974-9.3= \\ & 7.175739741 \end{aligned}$	7.18 cm	4	$\begin{array}{\|l} \hline \text { P1 } \\ \text { P1 } \\ \text { P1 } \\ \text { A1 } \\ \hline \end{array}$	starts process eg. Pythagoras theorem for 271.4 seen for subtracting radius from their answer cao

