	PiXL Pre Public Examination, May 2018, 2F, Edexcel Style Mark Scheme						
Qn	Working	Answer	Mark	Notes			
1		13.3225	1	B1	cao		
2		66%	1	B1	cao		
3		25	1	B1	cao		
		44					
4		0.3	1	B1	cao		
5 (a)		13, 21, 39, 27, 33	1	B1	cao		
(b)		33	1	B1	cao		
(c)		13 or 39	1	B1	cao		
(d)		27	1	B1	cao		
6		Yes, because the	2	M1	for method to find the median		
		median is 4		C1	explanation that 4 is the median and is bigger than 3.		
7	$52.4 \times 1000 = 52400$	29.9km	3	P1	for starting process to convert 52.4km to metres or		
	52400 - 22500 = 29900				22500m to km		
	$29900 \div 1000 = 29.9$			P1	for 52400m or 22.5km seen		
				A1	cao		

	Qn	Working	Answer	Mark		Notes
8	(a)		-5 and -1	2	B2	for -5 and -1
	(b)		Add 4	1	B1	cao
	(c)	4n - 29 = -50	Full explanation	1	C1	nth term is $4n - 29$; $(4 \times -5) - 29 = -49$
		4n = -21	_			, ,
		n = -5.25				
9			$(24-4) \div 2 = 10$	2	B1	for $(24-4) \div 2$ or 10
					B2	for $(24-4) \div 2 = 10$
10		$1095 \div 4 = 273.75$	27375	2	M1	for $1095 \div 4 = 273.75$
		$273.75 \times 100 = 27375$			A1	cao
11	(a)	$50 + (33 \times 9) = 347 \text{ mins}$	5hours 47 minutes	2	M1	for $50 + (33 \times 9)$ or 347 seen
					A1	cao
	(b)	$(554 - 50) \div 9 = 56$	56 tiles	2	M1	for 554 minutes or $(554 - 50) \div 9$
					A1	cao
12	(a) (i)		Nutty Crunch	1	B1	cao
	(ii)		186kj	1	B1	cao
	(b)(i)	$510 \div 150 = 3.4$	119g	2	M1	for 35 ÷ 150 or 510 ÷ 150
		$3.4 \times 35 = 119$			A1	cao
	(ii)	$(510 \div 150) \times 3 = 10.2$	9.8g	2	M 1	for $3 \div 150$ or $510 \div 150$ or $5 \div 150$ or $600 \div 150$
		$(600 \div 150) \times 5 = 20$			A1	cao
		20 - 10.2 = 9.8				
13	(a)		4:3:5	2	M1	for 640 : 480 : 800 or 320 : 240 : 400
					A1	cao
	(b)		2.5 oe	1	A1	cao

	Qn	Working	Answer	Mark		Notes
14	(a)		£50	1	B1	cao
	(b)(i)		£200	1	B1	cao
	(ii)		£110	1	B1	cao
	(c)	£30 is 1 hr	$12\frac{1}{3}$ hrs	2	M1	for £30 is 1 hour's work
		420 - 50 = 370	3		A1	cao
		$370 \div 30 = 12.333 \dots$				
15		$(180 - 38) \div 2 = 71^{\circ}$	Shown, with	4	M1	for method to find angle ABC or ACB
		$180 - 71 = 109^{\circ}$	reasons		M1	for full method $(180 - 38) \div 2 = 71^{\circ}$; $180 - 71 =$
						109°
					C1	for one appropriate reason
					C1	for complete set of reasons
16		375.5 - 350 = 25.5	7.3%	3	M1	for 375.5 – 350 or 25.5 seen
		$(25.5 \div 350) \times 100$			M1	for $(25.5 \div 350) \times 100$
		= 7.28			A1	cao
17	(a)		$\frac{4}{12}$ oe	1	B1	cao
	(b)	$63 \div 3 = 21 \text{ is } 1 \text{ part}$	105	2	M1	for method to find 1 part
		$21 \times 5 = 105$			A1	cao
18		$0.6 \times 13 = £7.80$	Cheaper to eat in	4	M1	for cost of pizza in the same currency (either \$ or £)
		$7.8 \times 1.2 = £9.36$	the UK by 8p		M1	for method to find cost of one pizza including service
		$8 \times 1.16 = £9.28$				charge
					A1	for full method to find cost in both countries ie 9.36
						and 9.28 seen oe.
					C1	statement
19	(a)		All 5 points plotted	2	B1	for at least 2 correct points plotted
					B1	for all points plotted correctly
	(b)		39% - 44%	2	B1	for line of best that can be used to estimate
						percentage score on paper 2

	Qn	Working	Answer	Mark		Notes
					B1	for 39 - 44%
	(c)		reason	1	C1	for reason, e.g. lobf can vary, data is only a sample, scale cannot be read exactly
	(d)		0.8 - 1	2	M1	for method to find gradient, eg triangle drawn with "change in distance ÷ change in time
					A1	for 0.8 - 1
	(e)		interpretation given	1	C1	as the score in paper 1 increases, the score in paper 2 increases.
20	(a)		Enlargement, SF2,	2	B1	for enlargement and scale factor 2
			centre (1,3)		B1	for centre (1,3)
	(b)		Reflection in $y = x$	2	B1	for reflection
			_		B1	for mirror line $y = x$
21		12(3x+5) = 10(4x-3)	194cm	5	P1	for process of forming an expression for one area
		36x + 60 = 40x - 30			P1	for process of forming an equation to find value of x
		90 = 4x; $x = 22.5$			P1	for complete process to solve the equation
		$2((4 \times 22.5) - 3) + 20 =$			A 1	for $4x = 90$ or $x = 22.5$
		194			B1	ft using value of x in perimeter of B
22		5 ² -11 ²	-4.9	3	M1	for substituting correctly
		$\frac{2\pi^2}{2\pi^2}$			M1	for -96 or 19.73 seen
		$\frac{-96}{2\pi^2} = -4.86341$			A1	cao
23		$(1 \times 10) + (3 \times 8) +$	5	3	M1	for $f \times x$ using midpoints
		$(5.5 \times 5) + (8.5 \times 3) +$			M1	for $\Sigma fx \div 30$
		$(12 \times 4) = 135$			A1	cao
		$135 \div 30 = 4.5$				
24		$13.6^2 + 9.3^2 = 271.4$	7.18cm	4	P1	starts process eg. Pythagoras theorem
		$\sqrt{271.45} = 16.47573974$			P1	for 271.4 seen
		16.47573974 – 9.3 =			P1	for subtracting radius from their answer
		7.175739741			A1	cao