

Pre Public Examination

GCSE Mathematics (Edexcel style)
May 2018
Higher Tier
Paper 2H WORKED SOLUTIONS

Name	
Class	

TIME ALLOWED

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- You are permitted to use a calculator in this paper.
- · Do all rough work in this book.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets () at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 80.

© The PiXL Club Limited 2017

This resource is strictly for the use of member schools for as long as they remain members of The PiXL Club. It may not be copied, sold nor transferred to a third party or used by the school after membership ceases. Until such time it may be freely used within the member school. All opinions and contributions are those of the authors. The contents of this resource are not connected with nor endorsed by any other company, organisation or institution.

1 2 3	Mark	Out of
1		8
2	9	4
3	7 (20)	5
4	oled of	8 4 5 3 4 3 4 3
5 6 7		3
6		4
7		3
8		3
9	plute th	4
10	a il Jeri	3
11		3
12		3
13		4
14		5
15		2
16 17 18		4 4 3
17)	4
18	5	3
19		5
20		4
21	j.	3
Total		80

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

Question 1.

The table below shows the percentages obtained by 10 students on Paper 1 and Paper 2 of an examination.

Student	Α	В	C	D	Е	F	G	Н	I	J
Paper 1	73	26	66	42	18	50	78	84	26	57
Paper 2	68	14	55	37	17	42	74	77	24	49

(a) Complete the scatter diagram on the grid below.

BI for at least 2 points correctly plotted BI for all points plotted correctly

(2)

The first 5 students' percentages have been plotted.

	partners in excellence	
(b) Tariq scored 48% on Paper 1, but was absent for Paper 2.		
By drawing a line of best fit, estimate his percentage score on Paper 2.		
BI for line of best fit drawn		
or for me of seas i		
	42% BI	%
[- 8-1\]		(2)
(c) Why is your answer to part (b) only an estimate?		
The line of best fit can vary CI		
(d) Calculate the anadient of your line of heat fit		(1)
(d) Calculate the gradient of your line of best fit.		
change in x = 10 = 1		
change in x 10		
MI		
	1 A1	
	i ni	
		(2)
(a) Cina an intermediation of the small and a Company of the state of the small and a Company of the state of the small and a Company of the state of the state of the small and a Company of the state		
(e) Give an interpretation of the gradient of your line of best fit.		
As the score in paper 1 increases, the sco	we in paper	2
increases CI		
		(1)
M	(Tota	18 marks)

Question 2.

(a) Describe fully the single transformation that maps triangle A onto triangle B.

are un interprovet							
	ngle C.	tr	gle A onto	maps trian	ormation that	gle transfe	escribe fully the sin
	<u> </u>		y = x	LINE	MIRROR	Bl	REFLECTION

Question 3.

Here is a triangle and a rectangle.

All measurements are in centimetres.

The area of triangle A is the same as the area of rectangle B.

Work out the perimeter of rectangle B.

$$\frac{12(6x+10)}{2} = 10(4x-3)^{\frac{1}{1}} P_1 + P_1^{\frac{11}{1}} P_1^{\frac$$

$$\frac{72x + 120}{2} = 40x - 30$$

$$36x + 60 = 40x - 30$$

$$60+30 = 40x - 36x$$

$$90 = 4x$$

$$x = \frac{90}{4}$$

$$90 = 4x$$

$$x = \frac{90}{4}$$

$$x = 22.5 \quad \text{PI}$$

Length of rectangle

$$(4 \times 22.5) - 3 = 87$$
 PI
87 + 87 + 10 + 10 = 194CM

Question 4.

$$H = \frac{y^2 - w^2}{2\pi^2}$$

$$y = 5, w = 11$$

Calculate the value of
$$H$$
.

$$H = \frac{5^2 - 11^2}{2\pi^2} MI$$

$$H = \frac{25 - 121}{2\pi^2}$$

$$H = \frac{-96}{2\pi^2}$$
 MI
 $H = -\frac{48}{\pi^2}$ $H = -4.863416815$

$$H = -4.9$$
 A1

(Total 3 marks)

Question 5.

The table shows the number of letters delivered to the 30 houses in a street.

Number of Letters Delivered	Number of Houses (Frequency)	MIDPOINT
$0 < L \le 2$	10	1
$2 < L \le 4$	8	3
$4 < L \le 7$	5	5.5
$7 < L \le 10$	3	8 · 2
$10 < L \le 14$	4	12

Calculate an estimate for the mean number of letters delivered per house.

Give your answer to the nearest integer.

(1 x 10) + (3x8) + (5.5 x 5) + (8.5 x 3) + (12 x 4) = 135 MI

$$\frac{135}{30} = 4.5 MI$$

5 A1

Question 6.

A is a point on a circle with centre O and radius 9.3cm.

AB is the tangent to the circle at A.

$$AB = 13.6$$
cm.

OB intersects the circle at C.

Calculate the length of BC.

Give your answer to 3 significant figures.

$$13.6^{2} + 9.3^{2} = 08^{2}$$
 PI
 $184.96 + 86.49 = 08^{2}$
 $271.45 = 08^{2}$ PI
 $08 = \sqrt{271.45}$
 $08 = 16.47573974$
 $16.47573974 - 9.3 = 7.175739741$ PI

7.18

AL

Question 7.

Ouestion 6

(a) What is the reciprocal of 8

8	or	0.125	AI
			(1)

(b) Use your calculator to work out $\sqrt[3]{\frac{3\cos 60+2}{\sin 60+1}}$

Write down all the numbers on your calculator display.

$$= \sqrt[3]{\frac{3.5}{1.866025404}}$$
 MI
$$= \sqrt[3]{14 - 7\sqrt{3}}$$

1-	1. 233247274			. 233247274							AI		
	,.,,,,		••••	1101	• • • •	•••	• • •	•••					
				Œα	ota	13	m	ar	(2) ks				

Question 8.

Make r the subject of $s = \sqrt{2r + \frac{rw}{5}}$

$$S^2 = 2r + \frac{rw}{5} \quad MI$$

$$5S^2 = 10C + CW$$

$$C = \frac{5s^2}{10 + W}$$

$$\Gamma = \frac{SS^2}{10+\omega}$$
(Total 3 marks)

Question 9.

The diagram shows a rectangle.

The length of the rectangle is x cm.

The length of a diagonal of the rectangle is 8 cm.

The perimeter of the rectangle is 20 cm.

(a) Show that $x^2 - 10x + 18 = 0$

$$\frac{20-2x}{2} = \text{short length of rectangle}$$

$$10-x = \sqrt{8^2-x^2}$$

$$(10-x)^2 = 8^2-x^2 \quad MI$$

$$100 - 20x + x^2 = 64 - x^2$$
 My

$$2x^2 - 20x + 36 = 0$$
 M1

PiXL club partners in excellence

Question 10.

Calculate the n^{th} term of the following quadratic sequence

alouge a rectanole

The length of the rectangle is x cm. The length of a diagonal of the recta fibe perimeter of the rectangle is 20. Show that $x^2 = 10x + 18 = 0$.

2n2 + 2n-5 Al

(Total 3marks)

Question 11.

Express the recurring decimal 0.213 as a fraction.

2n - 5

$$x = 2i3$$
 $10x = 2 \cdot i3$ — ① MI
 $1000x = 2i3 \cdot i3$ — ②

 $2 - 0$
 $990x = 2i1$ MI
 $x = \frac{2i1}{990}$ AI

Question 13.

A plane is flying at a constant height of 8000m.

It flies vertically above me and 30 seconds later the angle of elevation is 74°.

Find the speed of the plane.

Give your answer to one decimal place.

.....m/s (**Total 4 marks**)

Question 14.

The life expectancy, L, of a rat varies inversely to the square of the density, d, of poison distributed around its home.

When the density of poison is 2g/m² the life expectancy is 12.5 days.

(a) How long will the rat survive if the density of poison is 5g/m²?

$$L \propto \frac{k}{d^2}$$

$$L = \frac{50}{d^2}$$

$$L = \frac{50}{5^2}$$

$$K = 50 \text{ M}$$

2 days Al

(b) What is the density of poison, if the life expectancy is 1.3 days?

Give your answer to 2 decimal places.

$$d^{2} = \frac{50}{d^{2}}$$

$$d^{2} = \frac{50}{1.3}$$

$$d^{2} = \frac{500}{1.3}$$

$$d^{3} = \frac{500}{13}$$

d = 6. L

Question 12.

Thomas and Dan share their profits in the ratio 2:5

Thomas gets $\pounds F$

Dan gets $\pounds G$

Katy and Sam share twice as much profit as Thomas and Dan share.

They share the profit in the ratio 4:1

Katy gets £H

Sam gets £I

Find F:G:H:I

Give your answer in its simplest form.

$$\frac{4}{5} \times 2^{\times} = \frac{8^{\times}}{5}$$

$$\frac{1}{5} \times 2x = \frac{2x}{5} \qquad PI$$

$$\frac{2x}{7}:\frac{5x}{7}:\frac{8x}{5}:\frac{2x}{5}$$

The life expectancy,
$$L$$
, of a rat varies inversely to the square of the doc $\frac{x\mu_1}{35}$ $\frac{d}{35}$ or $\frac{x32}{35}$ or $\frac{x25}{35}$ or $\frac{x01}{35}$ its home.

Question 15.

A DIY shop sells 12 different types of screwdrivers.

Gary buys a different type of screwdriver on Monday, on Tuesday and on Wednesday.

In how many ways can he do this?

(Total 2 marks)

Question 16.

The incomplete table and histogram give some information about the ages of the people who live in a town in Wales.

(a) Use the information in the histogram to complete the frequency table below

Age (x) in years			Frequency
0	$0 < x \le 10$	10	160
.5	$10 < x \le 25$	15	15 x4 = 60
0	$25 < x \le 30$	5	5 x 8 = 40
0	$30 < x \le 40$	10	100
0	$40 < x \le 70$	30	120

(b) Complete the histogram.

160 ÷ 10 = 16 MI 4 8 100 ÷ 10 = 10 120 ÷ 30 = 4

FREQUENCY DENSITY

BI for all correct entries

> (2) (Total 4 marks)

Question 17.

A container has a surface area of 5000cm² and a capacity of 12.8 litres.

Find the surface area of a similar container which has a capacity of 5.4 litres.

$$\frac{12.8}{5.4} = \frac{64}{27}$$
 MI

$$LSF = \frac{4}{3} \quad ASF = \frac{16}{9} \quad MI$$

$$5000 \div 16 = 2812.5 \text{ MI}$$

$$\frac{9}{9} \text{ (Ental 2 marks)}$$

he incomplete table and histogram give some information about the ages of the people who live in a town in

(Total 4 marks)

Question 18.

$$x^{2} + 14x - 63 = (x + a)^{2} - b$$
 for all values of x.

Find the value of a and the value of b.

$$\alpha = \frac{1}{4} \pmod{A}$$
 on A

Question 19.

Two parallel lines are drawn 2cm from the centre of a circle of radius 4cm.

Calculate the shaded area to one decimal place.

PI for splitting shape into triangles and sectors

=
$$\sqrt{4^2 - 2^2}$$

= $\sqrt{16 - 4}$
= $\sqrt{12}$
= $2\sqrt{3}$ PI

Area of 1 triangle:
$$\frac{2 \times 2\sqrt{3}}{2}$$

$$= \frac{4 \sqrt{3}}{2}$$

$$= 2\sqrt{3}$$

Area of 4 briangles: 4 x 2.13 = 8.13

$$\sin x = \frac{213}{4}$$

$$x = \sin^{3} \frac{213}{4}$$

$$x = 60^{\circ}$$

Angles on Straight line add to 180°.

Area of Sector:
$$\frac{60}{360} \times \pi \mu^2$$

$$= \frac{1}{6} \times \pi 16$$

$$= \frac{8\pi}{3} \qquad P1$$
Area of both sectors: $\frac{8\pi}{3} \times$

Area of both sectors: $\frac{8\pi}{3} \times 2$ $= \frac{16\pi}{3}$

Avea of shaded region:
$$8.13 + \frac{16\pi}{3} = 30.61156$$

30.6 cm2 Al

Question 20.

When a voltage V is applied to a resistance R, the power consumed P is given by $P = \frac{V^2}{R}$.

If you measure V as 12.2 and R as 2.6, both correct to 1 decimal place. The bound of the half and stable I

Calculate the smallest possible value of P to 1 decimal place.

$$\frac{0.1}{2} = 0.05$$

$$12.2 + 0.05 = 12.25 \quad UB \quad MI$$

$$12.2 - 0.05 = 12.15 \quad LB$$

$$\frac{R}{2.6 + 0.05} = 2.65 \quad UB$$

$$P = \frac{12.15^2}{2.65}$$
 MI, MI

2.6 -0.05 = 2.55

 $P = \frac{55 \cdot 7}{4}$

Question 21.

Measured from a control tower O, an aircraft is 25km north, 40km east and 5km high.

Find the distance from the control tower to the aircraft.

Give your answer to one decimal place.

